COMPARATIVE ANALYSIS OF METHODSTIME SERIES FORECASTING FOR PREDICTION OF DRUG SALES IN PHARMACY (CASE STUDY: CHEMICAL FARMA TAKOMA PHARMACY)
DOI:
https://doi.org/10.33387/jati.v2i1.62Keywords:
sales prediction, pharmacy, long short term memory (LSTM), Auto Regressive Moving Average (ARIMA)Abstract
The existence of a pharmacy is very important for the community to meet the needs of medicines. Kimia Farma Pharmacy is a company engaged in the pharmaceutical sectorhealth care company and has the largest pharmacy network in Indonesia. Predicting drug sales at pharmacies is one of the priority activities in determining future sales, this aims to control stocks so that there are no excess and shortages of stock and prevent the unavailability of drugs that consumers want to buy. In this study, prediction of drug sales was carried out by comparing methodsmachine learning that isLong Short Term Memory (LSTM) and statistical methods ieAuto Regressive Moving Average (ARIMA) using 5 types of drug data, then the prediction results will becompared to with the evaluation methodRoot Mean Square Error (RMSE). Based on the results of the tests performed, the RMSE value of the LSTM method was superior to the RMSE value of the ARIMA method with a difference in the RMSE ratio for the LSTM and ARIMA models for the Acitral Suspension drug which was 4.37, for Paracetamol Syrup with a value of 38.93, for Omepros with a difference in RMSE ratio of 13.60 , for Calcium D Redoxon with a RMSE difference of 1.25, and Noza Tab@100 with a RMSE difference of 11.15. Although the LSTM model produces lower RMSE results compared to the RMSE in the ARIMA model, the LSTM model that has been created is not recommended to be used because it experiences overfitting, this is because the LSTM model cannot predict accurately for data testing or for new data types.
References
Rofi'ah, I., & Hantoro, K. 2022. Perancangan Sistem Informasi Penjualan Obat-Obatan Berbasis Web Pada Apotek Diana Menggunakan Algoritma Horspool. Jurnal Penelitian Mahasiswa Ilmu Komputer, 3(2) 195-2016. https://doi.org/10.31599/jsrcs.v3i2.1404.
Dewanti, FP, Setiyowati, S., & Harjanto, S. 2022. Prediksi Persediaan Obat Untuk Proses Penjualan Menggunakan Metode Decision Tree Pada Apotek. Jurnal Teknologi Informasi Dan Komunikasi (TIKomSiN), 10 (1), 25-33. https://doi.org/10.30646/tikomsin.v10i1.604
Wibowo, D. A. (2018). Prediksi Penjualan Obat Herbal Hp Pro Menggunakan Algoritma Neural Network. Technologia Jurnal Ilmiah, 9(1), https://doi.org/10.31602/tji.v9i1.1100
Render, B., Ralph, M. S, Jr., & Michael, E.H. 2018. Quantitative Analysis for Management Thirteenth Edition.
Makridakis, S., Evangelos, S., Vassilios, A. 2018. Statistical and Machine Learning forecasting methods: Concerns and ways forward. PLoS ONE, 12(3), 1-26. https://doi.org/10.1371/journal.pone.0194889.
Gunaryati, A., Fauziah, F., & Andryana, S. 2018. Perbandingan Metode-metode Peramalan Statistika untuk Data Indeks Harga Pangan. STRING (Satuan Tulisan Riset dan Inovasi Teknologi), 2 (3), 241-248. https://doi.org/10.30998/string.v2i3.2200.
Arifin, I., Haidi, RF, & Dzalhaqi, M. (2021). Penerapan Computer Vision Menggunakan Metode Deep Learning pada Perspektif Generasi Ulul Albab. Jurnal Teknologi Terpadu, 7 (2), 98-107. https://doi.org/10.54914/jtt.v7i2.436
Karno, A.S.B. (2020). Analisis Data Time series Menggunakan LSTM (Long Short Term Memory) dan ARIMA (Autocorrelation Integrated Moving Average) dalam Bahasa Python. ULTIMA InfoSys, 9(1), 1-7. https://doi.org/10.31937/si.v9i1.1223.
Le, Xuan Hien., Hung, Viet Ho., Giha, Lee., & Sungho, Jung. (2019). Application of Long Short-Term Memory (LSTM) Neural Network for Flood Forecasting. Water, 2-19. https://doi.org/10.3390/w11071387.
Vavliakis, K. N., Siailis, A., & Symeonidis, A. L. (2021). Optimizing Sales Forecasting in e-Commerce with ARIMA and LSTM Models. In WEBIST (pp. 299-306). https://doi.org/10.5220/0010659500003058
Karno, A. S. B. (2020). Analisis Data Time Series Menggunakan LSTM (Long Short Term Memory) Dan ARIMA (Autocorrelation Integrated Moving Average) Dalam Bahasa Python. Ultima InfoSys: Jurnal Ilmu Sistem Informasi, 11(1), 1-7. https://doi.org/10.31937/si.v9i1.1223
Anshory, Maulana Ichwan., Yusuf, Priyandari., & Yuniaristanto. (2020). Peramalan Penjualan Sediaan Farmasi Menggunakan Long Short-term Memory: Studi Kasus pada Apotik Suganda. Performa: Media Ilmiah Teknik Industri, 19(2), 159-174. https://doi.org/10.20961/performa.19.2.45962.
Salsabila, S.E. (2020). Model Prediksi Penjualan Multi-Item Time Series Berbasis Machine Learning Menggunakan Metode ARIMA dan LSTM pada produk perishable (studi kasus: retail sayur tosaga). Universitas Islam Indonesia Yogyakarta.
Poomka, Pumrapee., Wattana Pongsena., Nittaya Kerdprasop., & Kittisak Kerdprasop. 2019). SMS Spam Detection Based on Long Short-Term Memory and Gated Recurrent Unit, International Journal of Future Computer and Communication,8(1), 11-15. https://doi.org/10.18178/ijfcc.2019.8.1.532.
Silvanie, A., & Rino, S. (2022). Aplikasi Chatbot Untuk FAQ Akademik Di Ibi-K57 Dengan Lstm Dan Penyematan Kata, JIKO, 5(1), 19-27. DOI:10.33387/jiko.
Aju, C.N. (2020). Pemodelan Long Short Term Memory (LSTM) untuk Prakiraan Penjualan Berdasarkan Basis Data Penjualan Retail pada Kontrol Persediaan (Disertasi doktoral, IPB University).
Buchori, M & Tedjo, S. (2018). Peramalan Produksi Menggunakan Metode Autoregressive Integrated Moving Average (ARIMA) Di PT. XYZ, Prozima, 2(1), 27-33. http://doi.org/10.21070/prozima.v2i1.1290.
Putri, E.S & Mujiono, S. (2021). Prediksi Penjualan Produk Untuk Mengestimasi Kebutuhan Bahan Baku Menggunakan Perbandingan LSTM dan ARIMA, 10(2), 162-171. https://doi.org/10.22441/format.2021.v10.i2.007.
Jaya, J.D. (2019). Peramalan Jumlah Populasi Sapi Potong di Kalimantan Selatan Menggunakan Metode Moving Average, Exponential Smoothing dan Trend Analysis. 6(1), 41-50. https://doi.org/10.34128/jtai.v6i1.88.
Sofi, K., Sunge, A. S., Riady, S. R., & Kamalia, A. Z. (2021). Perbandingan algoritma linear regression, LSTM, dan GRU dalam memprediksi harga saham dengan model time series. PROSIDING SEMINASTIKA, 3(1), 39-46. https://doi.org/10.47002/seminastika.v3i1.275
Arsi, P., Tri, A., Desty, R., Pungkas, S. (2022). Implementasi Sliding Window Algorithm pada Prediksi Kurs berbasis Neural Network, Journal of Computer and Information Technology, 6(1), 51-59. http://doi.org/10.25273/doubleclick.v6i1.13496.
Dong, L., Desheng, F., Xi, W., Wei, W., Robertas, D., Rafał, S., Marcin, W. (2020). Prediction of Streamflow Based on Dynamic Sliding Window LSTM, Water, 1-11. doi:10.3390/w12113032
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Jurnal Jaringan dan Teknologi Informasi

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.