COMPARATIVE ANALYSIS OF NEURAL NETWORKS AND NAÏVE BAYES METHODS FOR CREDIT APPROVAL CLASSIFICATION (CASE STUDY: PT. ADIRA FINANCE TERNATE CITY)

Authors

  • Ahmad Nur Arfandi Program Studi Teknik Informatika, Fakultas Teknik, Universitas Khairun Jl. Jati Metro, Kota Ternate Selatan , Program Studi Teknik Informatika, Fakultas Teknik, Universitas Khairun Jl. Jati Metro, Kota Ternate Selatan
  • Assaf Arief Program Studi Teknik Informatika, Fakultas Teknik, Universitas Khairun Jl. Jati Metro, Kota Ternate Selatan , Program Studi Teknik Informatika, Fakultas Teknik, Universitas Khairun Jl. Jati Metro, Kota Ternate Selatan
  • Muhammad Fhadli Program Studi Teknik Informatika, Fakultas Teknik, Universitas Khairun Jl. Jati Metro, Kota Ternate Selatan , Program Studi Teknik Informatika, Fakultas Teknik, Universitas Khairun Jl. Jati Metro, Kota Ternate Selatan
  • Rosihan Program Studi Teknik Informatika, Fakultas Teknik, Universitas Khairun Jl. Jati Metro, Kota Ternate Selatan , Program Studi Teknik Informatika, Fakultas Teknik, Universitas Khairun Jl. Jati Metro, Kota Ternate Selatan

DOI:

https://doi.org/10.33387/jati.v2i2.115

Keywords:

data mining, Classification, credit risk, neural network, naive bayes

Abstract

Credit is one of the shortcuts sometimes taken by people to fulfill their needs, but it carries significant risks for companies, such as defaulting credit customers. Data mining classification was chosen to help provide a solution to this problem. In this research, classification using the Neural Network and Naïve Bayes algorithm models was employed and compared to determine which algorithm model had the best accuracy in classifying the credit status of customers using the Python programming language. The evaluation was then conducted using a confusion matrix. The results of the Neural Network algorithm, after testing with the confusion matrix, showed the highest accuracy value at 85.0%, while the Naïve Bayes algorithm, after testing with the confusion matrix, showed the highest accuracy value at 84.7%. Based on these results, it can be concluded that the Neural Network performs slightly better in classifying credit customer data compared to Naïve Bayes.

References

Bawono, B., & Wasono, R. (2019). Perbandingan Metode Random Forest dan Naive Bayes. Jurnal Sains Dan Sistem Informasi, 3(7), 343–348. http://prosiding.unimus.ac.id

Ghani, A. D., Salman, N., & Mustikasari. (2019). Algoritma k-Nearest Neighbor Berbasis Backward Elimination Pada Client

Telemarketing. Prosiding Seminar Ilmiah Sistem Informasi Dan Teknologi Informasi, 8(2), 141–150.

Hadianto, N., Novitasari, H. B., & Rahmawati, A. (2019). Klasifikasi Peminjaman Nasabah Bank Menggunakan Metode Neural Network. Jurnal Pilar Nusa Mandiri, 15(2), 163–170.

https://doi.org/10.33480/pilar.v15i2.658

Handayani, F., & Pribadi, F. S. (2015). Implementasi Algoritma Naive Bayes Classifier dalam Pengklasifikasian Teks Otomatis Pengaduan dan Pelaporan Masyarakat melalui Layanan Call Center

Jurnal Teknik Elektro, 7(1), 19–24.

Lubis, C. P. (2022). Perbandingan Metode Radial Basis Function dan Multilayer Perceptron Terhadap Resiko Kredit Sepeda Motor. Infosys (Information System) Journal, 7(1), 25.

https://doi.org/10.22303/infosys.7.1.2022.25

-33

S. Kusumadewi. (2004). Membangun Jaringan Syaraf Tiruan Menggunakan Matlab Dan Excel Link (F. W. Nurwiyati (ed.); pertama). Graha Ilmu.

Siregar, B. (2021). Metode Statistika. https://rstudio-pubs- static.s3.amazonaws.com/805666_02a47e7c 20174d8ba01da72f16c951db.html#

Sumiah, A., & Mirantika, N. (2020). Perbandingan Metode K-Nearest Neighbor dan Naive Bayes untuk Rekomendasi Penentuan Mahasiswa Penerima Beasiswa pada Universitas Kuningan. Buffer Informatika (Jurnal Ilmiah Teknik Informatika), 6(April).

Widianto, M. H. (2019). Algoritma Naive Bayes. Binus University. Tersedia di: https://binus. ac.

id/bandung/2019/12/algoritma-naive-bayes/. Diakses tanggal, 22.

Published

2023-12-23

How to Cite

COMPARATIVE ANALYSIS OF NEURAL NETWORKS AND NAÏVE BAYES METHODS FOR CREDIT APPROVAL CLASSIFICATION (CASE STUDY: PT. ADIRA FINANCE TERNATE CITY). (2023). Jurnal Jaringan Dan Teknologi Informasi, 2(2), 31-38. https://doi.org/10.33387/jati.v2i2.115

Most read articles by the same author(s)

1 2 > >>